Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(28): 71780-71793, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34585345

RESUMEN

Slaughterhouse and wet market wastes are pollutants that have been always neglected by society. According to the Food and Agriculture Organization of the United Nations, more than three billion and nineteen million livestock were consumed worldwide in 2018, which reflects the vast amount and the broad spectrum of the biowastes generated. Slaughterhouse biowastes are a significant volume of biohazards that poses a high risk of contamination to the environment, an outbreak of diseases, and insecure food safety. This work comprehensively reviewed existing biowaste disposal practices and revealed the limitations of technological advancements to eradicate the threat of possible harmful infectious agents from these wastes. Policies, including strict supervision and uniform minimum hygienic regulations at all raw food processing factories, should therefore be tightened to ensure the protection of the food supply. The vast quantity of biowastes also offers a zero-waste potential for a circular economy, but the incorporation of biowaste recycling, including composting, anaerobic digestion, and thermal treatment, nevertheless remains challenging.


Asunto(s)
Mataderos , Eliminación de Residuos , Agricultura , Compostaje , Alimentos , Administración de Residuos
2.
J Environ Manage ; 320: 115772, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35944317

RESUMEN

Palm oil mill waste has a complex cellulosic structure, is rich in nutrients, and provides a habitat for diverse microbial communities. Current research focuses on how the microbiota and organic components interact during the degradation of this type of waste. Some recent studies have described the microbial communities present in different biodegradation processes of palm oil mill waste, identifying the dominant bacteria/fungi responsible for breaking down the cellulosic components. However, understanding the degradation process's mechanisms is vital to eliminating the need for further pretreatment of lignocellulosic compounds in the waste mixture and facilitating the commercialization of palm oil mill waste treatment technology. Thus, the present work aims to review microbial community dynamics via three biological treatment systems comprehensively: composting, vermicomposting, and dark fermentation, to understand how inspiration from nature can further enhance existing degradation processes. The information presented could be used as an umbrella to current research on biological treatment processes and specific research on the bioaugmentation of indigenous microbial consortia isolated during the biological degradation of palm oil mill waste.


Asunto(s)
Compostaje , Bacterias/metabolismo , Biodegradación Ambiental , Residuos Industriales/análisis , Consorcios Microbianos , Aceite de Palma/metabolismo
3.
Bioresour Technol ; 361: 127672, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35878771

RESUMEN

This study investigated the selective production of volatile fatty acids (VFAs) during anaerobic mixed-culture fermentation. The experiment used chicken manure (CM) as a potential substrate to produce high added-value propionic acid and butyric acid under an alkaline environment. The conversion of CM into selective VFAs depends highly on operational conditions such as pH and redox balance. Therefore, the current experiment is designed to employ amino acid addition and develop a redox balance control method to control the final VFA profile. This study showed that 0.2-5.0 % valine and threonine addition successfully enhanced propionic acid and butyric acid production during alkaline fermentation and hence decreased the proportion of acetic acid from 83 % to approximately 47 %. The oxidation-reduction potential (ORP) and redox cofactor ratio (NADH/NAD+) were measured to support the selective VFA production mechanism. The results obtained in this study bring extra value to the valorization of CM within the circular economy concept for selective value-added VFA production.


Asunto(s)
Ácidos Grasos Volátiles , Propionatos , Anaerobiosis , Reactores Biológicos , Ácido Butírico , Fermentación , Concentración de Iones de Hidrógeno , Estiércol , Oxidación-Reducción , Células Th17
4.
Bioresour Technol ; 361: 127685, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35878773

RESUMEN

Ammonia recovery from anaerobic digesters via side-stream stripping is a technique to recover nitrogen from manure wastes. This study demonstrated a novel approach to determining ammonia recovery to maintain total ammonia concentrations in the digester in the range of 1.7-2.1 gN/L. Increasing the pH during stripping from 8, 8.5 to 9.5 did not affect the stability of the digester. Methane yields of 60-80 mL/(gVS.d) and volatile fatty acid concentrations of 0-500 mg/L were reported throughout its operation. The low solubilisation increase upon recirculation of the digestate explained the lack of change in methane yields due to side-stream stripping. Increasing the pH during stripping also did not affect the digester's operating pH, which was attributed to the neutralising effect of biogas as stripping gas. Therefore, total ammonia concentrations in the digester can be controlled by determining the extent of ammonia recovery, and the pH during stripping can be increased without compromising the digester's stability.


Asunto(s)
Amoníaco , Ríos , Anaerobiosis , Biocombustibles , Reactores Biológicos , Concentración de Iones de Hidrógeno , Estiércol , Metano
5.
Environ Pollut ; 307: 119586, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35680069

RESUMEN

Numerous studies found the presence of persistent organic pollutants (POPs) in various environmental compartments, including air, water, and soil. POPs have been discovered in various industrial and agricultural products with severe environmental and human health consequences. According to the data, South Korea is a hotspot for POP pollution in the southern part of Asia; hence, South Korea has implemented the Stockholm Convention's National Implementation Plan (NIP) to address this worldwide issue. The purpose of this review is to assess the distribution pattern of POPs pollution in South Korea's atmosphere. According to findings, PAHs, PCBs, BFRs, and PBDEs significantly polluted the atmosphere of South Korea; however, assessing their exposure nationwide is difficult due to a shortage of data. The POPs temporal trend and meta-analysis disclosed no proof of a decrease in PAHs and BFRs residues in the atmosphere. However, POP pollution in South Korea tends to decrease compared to contamination levels in neighboring countries like Japan and China.


Asunto(s)
Contaminantes Ambientales , Bifenilos Policlorados , Hidrocarburos Policíclicos Aromáticos , Atmósfera/análisis , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Éteres Difenilos Halogenados/análisis , Humanos , Contaminantes Orgánicos Persistentes , Bifenilos Policlorados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis
6.
Front Bioeng Biotechnol ; 9: 637649, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33796509

RESUMEN

Thermotoga maritima (Tma) contains genes encoding various hyperthermophilic enzymes with great potential for industrial applications. The gene TM1752 in Tma genome has been annotated as cellulase gene encoding protein Cel5B. In this work, the gene TM1752 was cloned and expressed in Escherichia coli, and the recombinant enzyme was purified and characterized. Interestingly, the purified enzyme exhibited specific activities of 416 and 215 U/mg on substrates galactomannan and carboxy methyl cellulose, which is the highest among thermophilic mannanases. However, the putative enzyme did not show sequence homology with any of the previously reported mannanases; therefore, the enzyme Cel5B was identified as bifunctional mannanase and cellulase and renamed as Man/Cel5B. Man/Cel5B exhibited maximum activity at 85°C and pH 5.5. This enzyme retained more than 50% activity after 5 h of incubation at 85°C, and retained up to 80% activity after incubated for 1 h at pH 5-8. The K m and V max of Man/Cel5B were observed to be 4.5 mg/mL galactomannan and 769 U/mg, respectively. Thin layer chromatography depicted that locust bean gum could be efficiently degraded to mannobiose, mannotriose, and mannooligosaccharides by Man/Cel5B. These characteristics suggest that Man/Cel5B has attractive applications for future food, feed, and biofuel industries.

7.
Environ Sci Pollut Res Int ; 26(32): 32777-32789, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31520387

RESUMEN

By growing urban population, Iran faces numerous environmental issues and solid waste management is on the top of these problems. Studies showed that a daily average of 700-1000 g of wastes are produced per person in Iran, in which organic waste accounts for a significant amount. On the other hand, hospital waste represents a part of the wastes, which need careful consideration from the environmental point of view. In the present study, the amount, composition, and management of urban and hospital wastes were evaluated in 7 Iranian metropolises, which account for about 30% of the population and produce about 35% of the country wastes. Based on prior surveys, landfill method is the current main method for waste management in these cities, which is generally not completely sanitary and therefore causes many environmental problems. The other common methods for waste management in these cities are composting of organic wastes, and the use of waste conversion methods to energy. However, the latter is ongoing only in Tehran which also includes some limitations. Therefore, the study also evaluated the future perspectives and feasibility of waste-to-energy conversion as a promising economic route for waste disposal.


Asunto(s)
Residuos Sólidos , Administración de Residuos/métodos , Ciudades , Compostaje , Irán , Crecimiento Demográfico , Eliminación de Residuos/métodos , Instalaciones de Eliminación de Residuos
8.
Artículo en Inglés | MEDLINE | ID: mdl-31200470

RESUMEN

The present study reports mathematical modelling of palm oil mill effluent and palm-pressed fiber mixtures (0% to 100%) during vermicomposting process. The effects of different mixtures with respect to pH, C:N ratio and earthworms have been optimized using the modelling parameters. The results of analysis of variance have established effect of different mixtures of palm oil mill effluent plus palm press fiber and time, under selected physicochemical responses (pH, C:N ratio and earthworm numbers). Among all mixtures, 60% mixture was achieved optimal growth at pH 7.1 using 16.29 C:N ratio in 15 days of vermicomposting. The relationship between responses, time and different palm oil mill waste mixtures have been summarized in terms of regression models. The obtained results of mathematical modeling suggest that these findings have potential to serve a platform for further studies in terms of kinetic behavior and degradation of the biowastes via vermicomposting.


Asunto(s)
Compostaje , Residuos Industriales , Modelos Teóricos , Oligoquetos/metabolismo , Aceite de Palma , Animales , Biomasa
9.
Artículo en Inglés | MEDLINE | ID: mdl-30893763

RESUMEN

This study aims to study the waste management process and recycling of municipal waste in Tehran. Currently, Kahrizak is the defined landfill area which collects the waste generated from 22 districts of Tehran. The organic wastes undergo to the windrow composting method in order to manage the partial of the waste generated in the city. Samples from the compost pile generated in Kahrizak were examined to evaluate its fertilizer value to be used further by the farmers. The results show that the obtained compost does not reach the acceptable quality to be used further in agriculture, due to lack of homogeneity, aeration and presence of heavy metals. Overall, it has been concluded that, due to the improper waste segregation and management prior to sending to landfill and presence of non-organic materials such as hazardous metals and medical wastes, causes difficulties in proper waste management, implementation and producing high quality compost. Based on this study the existence of stakeholders, society, economy and proper handling rules can effectively improve the waste management system in the country and leads to the sustainable green environment.


Asunto(s)
Compostaje/normas , Eliminación de Residuos/métodos , Residuos Sólidos/análisis , Administración de Residuos/métodos , Ciudades , Irán , Metales Pesados , Reciclaje/métodos , Instalaciones de Eliminación de Residuos
10.
Environ Sci Pollut Res Int ; 26(8): 7428-7441, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30693445

RESUMEN

Phragmites australis (common reed) is one of the most extensively distributed emergent plant species in the world. This plant has been used for phytoremediation of different types of wastewater, soil, and sediments since the 1970s. Published research confirms that P. australis is a great accumulator for different types of nutrients and heavy metals than other aquatic plants. Therefore, a comprehensive review is needed to have a better understanding of the suitability of this plant for removal of different types of nutrients and heavy metals. This review investigates the existing literature on the removal of nutrients and heavy metals from wastewater, soil, and sediment using P. australis. In addition, after phytoremediation, P. australis has the potential to be used for additional benefits such as the production of bioenergy and animal feedstock due to its specific characteristics. Determination of adaptive strategies is vital to reduce the invasive growth of P. australis in the environment and its economic effects. Future research is suggested to better understand the plant's physiology and biochemistry for increasing its pollutant removal efficiency.


Asunto(s)
Biodegradación Ambiental , Poaceae/fisiología , Metales Pesados/metabolismo , Plantas , Suelo , Contaminantes del Suelo/metabolismo
11.
Environ Sci Pollut Res Int ; 25(36): 35805-35810, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29663297

RESUMEN

Several treatment technologies are available for the treatment of palm oil mill wastes. Vermicomposting is widely recognized as efficient, eco-friendly methods for converting organic waste materials to valuable products. This study evaluates the effect of different vermicompost extracts obtained from palm oil mill effluent (POME) and palm-pressed fiber (PPF) mixtures on the germination, growth, relative toxicity, and photosynthetic pigments of mung beans (Vigna radiata) plant. POME contains valuable nutrients and can be used as a liquid fertilizer for fertigation. Mung bean seeds were sown in petri dishes irrigated with different dilutions of vermicomposted POME-PPF extracts, namely 50, 60, and 70% at varying dilutions. Results showed that at lower dilutions, the vermicompost extracts showed favorable effects on seed germination, seedling growth, and total chlorophyll content in mung bean seedlings, but at higher dilutions, they showed inhibitory effects. The carotenoid contents also decreased with increased dilutions of POME-PPF. This study recommends that the extracts could serve as a good source of fertilizer for the germination and growth enhancement of mung bean seedlings at the recommended dilutions.


Asunto(s)
Fabaceae/química , Fertilizantes/análisis , Germinación/efectos de los fármacos , Semillas/crecimiento & desarrollo , Residuos Sólidos/análisis , Vigna/crecimiento & desarrollo , Compostaje , Fertilizantes/toxicidad , Industria de Alimentos , Aceite de Palma , Semillas/efectos de los fármacos , Vigna/efectos de los fármacos
12.
Adv Colloid Interface Sci ; 249: 2-16, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28935100

RESUMEN

Among the various electrically conducting polymers, polyaniline (PANI) has gained attentions due to its unique properties and doping chemistry. A number of electrically conducting biodegradable polymers has been synthesized by incorporating a biodegradable content of cellulose, chitin, chitosan, etc. in the matrix of PANI. The hybrid materials are also employed as photocatalysts, antibacterial agents, sensors, fuel cells and as materials in biomedical applications. Furthermore, these biodegradable and biocompatible conducting polymers are employed in tissue engineering, dental implants and targeted drug delivery. This review presents state of the art of PANI based biodegradable polymers along with their synthesis routes and unique applications in diverse fields. In future, the synthesis of PANI-grafted biodegradable nanocomposite material is expected to open innovative ways for their outstanding applications.

13.
3 Biotech ; 7(3): 155, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28623493

RESUMEN

Several technologies are being applied for treatment of palm oil mill wastes. Among them, the biological treatments (vermicomposting) have widely been recognized as one of the most efficient and eco-friendly methods for converting organic waste materials into valuable products. The present study focuses on vermicomposting of acidic palm oil mill effluent (POME) mixed with the palm pressed fibre (PPF) which are found difficult to decompose in the environment. The industrial waste (POME) was vermicomposted using Lumbricus rubellus under laboratory conditions for a period of 45 days. A significant improvement in nitrogen, phosphorus, and potassium content was monitored during vermicomposting process. In addition, the decline in C:N ratio of vermicompost (up to 17.20 ± 0.60) reflects the degree of stabilization of POME-PPF mixture. Different percentages of the vermicompost extract obtained from POME-PPF mixture were also examined for the germination of mung bean (Vigna radiata) seed. The results showed that 75% vermicompost extract demonstrated better performance for the seed germination. On the basis of significant findings, POME-PPF mixture can be successfully used as a feeding material for the earthworms, while on the other hand, it can also be used as a cost-effective fertilizer for the germination and the proper growth of mung bean.

14.
Environ Sci Pollut Res Int ; 24(14): 12982-12990, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28378309

RESUMEN

The present paper reports management of palm oil mill effluent (POME) mixed with palm-pressed fibre (PPF) POME-PPF mixture using eco-friendly, cost-effective vermicomposting technology. Vermicomposting of POME-PPF was performed to examine the optimal POME-PPF ratio with respect to the criteria of earthworm biomass and to evaluate the decomposition of carbon and nitrogen in different percentages of POME-PPF mixtures. Chemical parameters such as TOC, N, P and K contents were determined to achieve optimal decomposition of POME-PPF. On this basis, the obtained data of 50% POME-PPF mixture demonstrated more significant results throughout the experiment after addition of the earthworms. However, 60 and 70% mixtures found significant only in the last stages of the vermicomposting process. The decomposition rate in terms of -ln (CNt/CNo) showed that the 50% mixture has higher decomposition rate as compared to the 60 and 70% (k50% = 0.0498 day-1). The vermicomposting extracts (50, 60 and 70%) of POME-PPF mixtures were also tested to examine the growth of mung bean (Vigna radiata). It was found that among different extract dilutions, 50% POME-PPF vermicompost extract provided longer root and shoot length of mung bean. The present study concluded that the 50% mixture of POME-PPF could be chosen as the optimal mixture for vermicomposting in terms of both decomposition rate and fertilizer value of the final compost. Graphical abstract ᅟ.


Asunto(s)
Residuos Industriales , Aceites de Plantas/química , Animales , Cinética , Oligoquetos , Aceite de Palma , Reciclaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...